
Elixir and Phoenix
Performance

Elixir Taiwan Meetup
June 12, 2017

Jake Morrison <jake@cogini.com>

Agenda

● Architecture
● Logging
● Metrics
● Performance Tuning

Architecture

"We do not have ONE web-server handling 2 millions sessions.
We have 2 million webservers handling one session each."
- Joe Armstrong

There is no magic:
● Find the real system bottlenecks: disk and network I/O, CPU,

RAM
● Trade thing you have more of for thing that you do not, e.g.

memory cache for db

Architecture

● Anything shared is a bottleneck
● GenServer is a code smell
● Shared nothing is the best
● "Logical" three tier: libraries for different parts of your app, not

processes
● Database is usually the ultimate bottleneck
● Lock contention inside the database limits number of

simultaneous requests

ETS is Your Friend

● Elixir data is immutable, ETS is the mechanism for mutability
● Typically 1 microsecond to read or write
● Useful for caching immutable data
● https://dockyard.com/blog/2017/05/19/optimizing-elixir-and-pho

enix-with-ets

https://dockyard.com/blog/2017/05/19/optimizing-elixir-and-phoenix-with-ets
https://dockyard.com/blog/2017/05/19/optimizing-elixir-and-phoenix-with-ets

Case study: geoip lookups

● Figure out which country IP address is in
● 65 MB data file
● Started with gen_server, hit bottleneck
● Switched to pool of gen_servers, hit bottleneck
● Put it in ETS

– Query time now 5 μs, worst case
– Added second level "result cache" at 1 μs

● Binary data is shared out of process

Logging is not free

● Can be the most resource intensive thing your app does
● Disk I/O and CPU
● Serializing your application through the log file, e.g. via a

GenEvent server
● Have to store and move logs around
● Someone has to look at them = log blindness

Logging is not free

● Processes send messages to the GenServer (GenEvent)
● When the GenServer mailbox fills up, your application dies
● Erlang disk_log FTW
● Separate optimized disk writing process
● 100K log records per second
● Whatever problem you have, Ericsson had it 20 years ago at

BT

Better Logging

● Targeted logging, e.g. just requests and responses, everything
else you can recreate

● Log only when there is a failure
● Erlang error logging gives you everything needed to replicate

a problem
● Only log actionable information

Log Levels

● Critical: Wake me up in the middle of the night
● Error: will look at it first thing tomorrow
● Warning: Display in staging environment
● Debug: Display on developer's machine

Log Levels

● Error: Something is broken, if it happens too much, monitoring
system will tell me

● Warning: Invalid data
● Notice: Things that happen on startup or occasionally
● Info: A line of data for each request about what the system did
● Debug: Useful for developers, too much work for production

We typically run at “notice” level in production, info in test /
canary, debug in dev

Metrics

● I don’t care about logs, what I care about is:
– How is the system performing?
– Where are the problems?
– Where are the bottlenecks?
– Are we meeting SLAs?
– Business level metrics, e.g. signups per hour, orders per hour

● Alert on user visible symptoms, not technical failures

Metrics

● Counters, gauges, durations (histograms)
● Average duration vs 99% duration
● Every time you write a log message, write a counter to see

how often it happens

Metrics

● Number of requests
● Number of errors
● Processing duration / latency

USE Method

● Utilization: “the percentage time that the resource was busy
servicing work” e.g. CPU 50% busy or disk 90% full

● Saturation: “the degree to which the resource has extra work
which it can’t service”, e.g. load average (task ready to run) or
queue depth

● Errors: Percentage of requests with an error
● http://www.brendangregg.com/usemethod.html
● Batch processes

http://www.brendangregg.com/usemethod.html

Measurement

● Ideally: Measure at the client and on the server
● Measure at a lower level than your application

– Cowboy middleware

Tools

● Prometheus / Grafana

 https://prometheus.io/docs/practices/instrumentation/
● Some crazy expensive service
● Cost of cloud vs dedicated hardware

– Log aggregation with Logstash / Elasticsearch / Kibana (ELK)
– Tested with 60 Mbps of traffic = $600/month in AWS
– 4 x $50/month cheap dedicated servers with i7 CPU and 32 GB

RAM, 2 TB bandwidth per month = $200 for multiples of traffic

https://prometheus.io/docs/practices/instrumentation/

Performance Tuning

Observer

● Good overall view of what your application is doing
http://erlang.org/doc/apps/observer/
– Process structure
– Resource usage: CPU, RAM
– Mailbox queue size

● Recon: http://ferd.github.io/recon/
● observer_cli: https://github.com/zhongwencool/observer_cli

– “top” for Erlang VM

http://ferd.github.io/recon/
https://github.com/zhongwencool/observer_cli

Observer

Observer

Observer

Observer

observer_cli

Measure, Don't Guess

● Your intuition may be wrong
● Don't optimize things that don't matter
● Optimize the hot path
● Driver for performance is often abuse use cases, e.g. DDOS

Lots of tools

● http://homeonrails.com/2016/05/profiling-in-erlang/
● http://www.snookles.com/erlang/ef2015/slf-presentation.html

http://homeonrails.com/2016/05/profiling-in-erlang/
http://www.snookles.com/erlang/ef2015/slf-presentation.html

Lots of tools

● Micro:
– timer:tc
– Benchee: https://github.com/PragTob/benchee

● Macro
– fprof

● http://erlang.org/doc/man/fprof.html
● https://github.com/isacssouza/erlgrind
● brew install qcachegrind --with-graphviz

– Flame graphs: https://github.com/slfritchie/eflame

● Tsung for load generation

https://github.com/PragTob/benchee
http://erlang.org/doc/man/fprof.html
https://github.com/isacssouza/erlgrind
https://github.com/slfritchie/eflame

Fprof + erlgrind + cachegrind

Surprising things: inspect

● Does a lot of work to introspect big data structures like conn
● Throws it away if debug message in production

Surprising things: uuid generation

● Globally unique request id, e.g.
63edd89e-4f45-11e7-9424-2fc1a54ffaf3

● Depends on MAC address, time, pid, random number
● Lists all the network interfaces
● Reads the clock
● Stateful, by pid: use process dictionary
● Time went from worst case of 500 μs down to less than one μs

Surprising things: iolists

● Erlang I/O functions use more efficient OS functions (writev vs
write). One reason Phoenix is so fast.

● "foo" <> "bar" vs ["foo", "bar"]
● Don't unnecessarily flatten data
● Make your APIs iolist friendly
● Law of leaky abstractions:

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-ab
stractions/

● https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-buil
ding-output-efficiently/

● http://www.evanmiller.org/elixir-ram-and-the-template-of-doom.
html

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-building-output-efficiently/
https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-building-output-efficiently/
http://www.evanmiller.org/elixir-ram-and-the-template-of-doom.html
http://www.evanmiller.org/elixir-ram-and-the-template-of-doom.html

OS and TCP/IP Tuning: open files

● Increase number of open files for user, for OS as a whole
● Starts at 1024, much too small
● Ends at 4M :-)

OS and TCP/IP Tuning

● Phoenix behind Nginx
● TCP connection is identified by four things

– source ip + source port + destination ip + destination port
– 127.0.0.1 + xxx + 127.0.0.1 + 4000
– There are 64K ports, 16-bit integer
– TCP/IP stack won't reuse a port for 2 x maximum segment lifetime = 2

minutes
– 60000 ports / 120 sec = 500 requests per sec max
– 1024 / 120 = 8.53 rps with default file handle limit
– Symptom: app thinks everything is fine, but you measure latency at Nginx,

you get some requests that take 5 sec waiting for a port

● Add HTTP "Connection: close" header, particularly for abuse

OS and TCP/IP Tuning

● http://theerlangelist.com/article/phoenix_latency
● http://www.phoenixframework.org/blog/the-road-to-2-million-w

ebsocket-connections

http://theerlangelist.com/article/phoenix_latency
http://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections
http://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections

Erlang VM tuning

● Async threads: set +A parameter to at least 12 threads per
core on which your node is deployed on. e.g. 128 on an 8 core

+A 128
● kernel-poll = more efficient socket interface

+K true

Questions?

	Slide 1
	Agenda
	Architecture
	Architecture
	ETS is your friend
	Case study: geoip lookups
	Logging is not free
	Logging is not free
	Better Logging
	Log Levels
	Log Levels
	Metrics
	Metrics
	Metrics
	USE Method
	Measurement
	Tools
	Performance Tuning
	Observer
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Measure, Don't Guess

	Lots of tools
	Lots of tools
	Slide 28
	Surprising things: inspect
	Surprising things: uuid generation
	Surprising things: iolists
	OS and TCP/IP Tuning: open files
	OS and TCP/IP Tuning
	OS and TCP/IP Tuning
	Erlang VM tuning
	Questions?

