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Agenda

● Architecture
● Logging
● Metrics
● Performance Tuning



Architecture

"We do not have ONE web-server handling 2 millions sessions. 
We have 2 million webservers handling one session each." 
- Joe Armstrong

There is no magic:
● Find the real system bottlenecks: disk and network I/O, CPU, 

RAM
● Trade thing you have more of for thing that you do not, e.g. 

memory cache for db



Architecture

● Anything shared is a bottleneck
● GenServer is a code smell
● Shared nothing is the best
● "Logical" three tier: libraries for different parts of your app, not 

processes
● Database is usually the ultimate bottleneck
● Lock contention inside the database limits number of 

simultaneous requests



ETS is Your Friend

● Elixir data is immutable, ETS is the mechanism for mutability
● Typically 1 microsecond to read or write
● Useful for caching immutable data
● https://dockyard.com/blog/2017/05/19/optimizing-elixir-and-pho

enix-with-ets

https://dockyard.com/blog/2017/05/19/optimizing-elixir-and-phoenix-with-ets
https://dockyard.com/blog/2017/05/19/optimizing-elixir-and-phoenix-with-ets


Case study: geoip lookups

● Figure out which country IP address is in
● 65 MB data file
● Started with gen_server, hit bottleneck
● Switched to pool of gen_servers, hit bottleneck
● Put it in ETS

– Query time now 5 μs, worst case
– Added second level "result cache" at 1 μs

● Binary data is shared out of process



Logging is not free

● Can be the most resource intensive thing your app does
● Disk I/O and CPU
● Serializing your application through the log file, e.g. via a 

GenEvent server
● Have to store and move logs around
● Someone has to look at them = log blindness



Logging is not free

● Processes send messages to the GenServer (GenEvent)
● When the GenServer mailbox fills up, your application dies
● Erlang disk_log FTW
● Separate optimized disk writing process
● 100K log records per second
● Whatever problem you have, Ericsson had it 20 years ago at 

BT



Better Logging

● Targeted logging, e.g. just requests and responses, everything 
else you can recreate

● Log only when there is a failure
● Erlang error logging gives you everything needed to replicate 

a problem
● Only log actionable information



Log Levels

● Critical: Wake me up in the middle of the night
● Error: will look at it first thing tomorrow
● Warning: Display in staging environment
● Debug: Display on developer's machine 



Log Levels

● Error: Something is broken, if it happens too much, monitoring 
system will tell me

● Warning: Invalid data
● Notice: Things that happen on startup or occasionally
● Info: A line of data for each request about what the system did
● Debug: Useful for developers, too much work for production

We typically run at “notice” level in production, info in test / 
canary, debug in dev



Metrics

● I don’t care about logs, what I care about is:
– How is the system performing?
– Where are the problems?
– Where are the bottlenecks?
– Are we meeting SLAs?
– Business level metrics, e.g. signups per hour, orders per hour

● Alert on user visible symptoms, not technical failures



Metrics

● Counters, gauges, durations (histograms)
● Average duration vs 99% duration
● Every time you write a log message, write a counter to see 

how often it happens



Metrics

● Number of requests
● Number of errors
● Processing duration / latency



USE Method

● Utilization: “the percentage time that the resource was busy 
servicing work” e.g. CPU 50% busy or disk 90% full

● Saturation: “the degree to which the resource has extra work 
which it can’t service”, e.g. load average (task ready to run) or 
queue depth

● Errors: Percentage of requests with an error
● http://www.brendangregg.com/usemethod.html
● Batch processes

http://www.brendangregg.com/usemethod.html


Measurement

● Ideally: Measure at the client and on the server
● Measure at a lower level than your application

– Cowboy middleware 



Tools

● Prometheus / Grafana

 https://prometheus.io/docs/practices/instrumentation/
● Some crazy expensive service
● Cost of cloud vs dedicated hardware

– Log aggregation with Logstash / Elasticsearch / Kibana (ELK)
– Tested with 60 Mbps of traffic = $600/month in AWS
– 4 x $50/month cheap dedicated servers with i7 CPU and 32 GB 

RAM, 2 TB bandwidth per month = $200 for multiples of traffic

https://prometheus.io/docs/practices/instrumentation/


Performance Tuning



Observer

● Good overall view of what your application is doing
http://erlang.org/doc/apps/observer/
– Process structure
– Resource usage: CPU, RAM
– Mailbox queue size

● Recon: http://ferd.github.io/recon/
● observer_cli: https://github.com/zhongwencool/observer_cli

– “top” for Erlang VM

http://ferd.github.io/recon/
https://github.com/zhongwencool/observer_cli


Observer



Observer



Observer



Observer



observer_cli



Measure, Don't Guess

● Your intuition may be wrong
● Don't optimize things that don't matter
● Optimize the hot path
● Driver for performance is often abuse use cases, e.g. DDOS



Lots of tools

● http://homeonrails.com/2016/05/profiling-in-erlang/
● http://www.snookles.com/erlang/ef2015/slf-presentation.html

http://homeonrails.com/2016/05/profiling-in-erlang/
http://www.snookles.com/erlang/ef2015/slf-presentation.html


Lots of tools

● Micro:
– timer:tc
– Benchee: https://github.com/PragTob/benchee

● Macro
– fprof

● http://erlang.org/doc/man/fprof.html
● https://github.com/isacssouza/erlgrind
● brew install qcachegrind --with-graphviz

– Flame graphs: https://github.com/slfritchie/eflame

● Tsung for load generation 

https://github.com/PragTob/benchee
http://erlang.org/doc/man/fprof.html
https://github.com/isacssouza/erlgrind
https://github.com/slfritchie/eflame


Fprof + erlgrind + cachegrind



Surprising things: inspect

● Does a lot of work to introspect big data structures like conn
● Throws it away if debug message in production



Surprising things: uuid generation

● Globally unique request id, e.g. 
63edd89e-4f45-11e7-9424-2fc1a54ffaf3

● Depends on MAC address, time, pid, random number
● Lists all the network interfaces
● Reads the clock
● Stateful, by pid: use process dictionary
● Time went from worst case of 500 μs down to less than one μs



Surprising things: iolists

● Erlang I/O functions use more efficient OS functions (writev vs 
write). One reason Phoenix is so fast.

● "foo" <> "bar" vs ["foo", "bar"]
● Don't unnecessarily flatten data
● Make your APIs iolist friendly
● Law of leaky abstractions: 

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-ab
stractions/

● https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-buil
ding-output-efficiently/

● http://www.evanmiller.org/elixir-ram-and-the-template-of-doom.
html

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-building-output-efficiently/
https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-building-output-efficiently/
http://www.evanmiller.org/elixir-ram-and-the-template-of-doom.html
http://www.evanmiller.org/elixir-ram-and-the-template-of-doom.html


OS and TCP/IP Tuning: open files

● Increase number of open files for user, for OS as a whole
● Starts at 1024, much too small
● Ends at 4M :-)



OS and TCP/IP Tuning

● Phoenix behind Nginx
● TCP connection is identified by four things

– source ip + source port + destination ip + destination port
– 127.0.0.1 + xxx + 127.0.0.1 + 4000
– There are 64K ports, 16-bit integer
– TCP/IP stack won't reuse a port for 2 x maximum segment lifetime = 2 

minutes
– 60000 ports / 120 sec = 500 requests per sec max
– 1024 / 120 = 8.53 rps with default file handle limit
– Symptom: app thinks everything is fine, but you measure latency at Nginx, 

you get some requests that take 5 sec waiting for a port

● Add HTTP "Connection: close" header, particularly for abuse



OS and TCP/IP Tuning

● http://theerlangelist.com/article/phoenix_latency
● http://www.phoenixframework.org/blog/the-road-to-2-million-w

ebsocket-connections

http://theerlangelist.com/article/phoenix_latency
http://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections
http://www.phoenixframework.org/blog/the-road-to-2-million-websocket-connections


Erlang VM tuning

● Async threads: set +A parameter to at least 12 threads per 
core on which your node is deployed on. e.g. 128 on an 8 core

+A 128
● kernel-poll = more efficient socket interface

+K true



Questions?
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