T'hinking Functionally

Elixir Taiwan Meetup
December 15, 2020

Jake Morrison jake@cogini.com

©Cogini


mailto:jake@cogini.com?subject=

Agenaa

* What is functional programming”

* Shit talking

©Cogini



What Is Functional
Programming’?

More sophisticated type systems, e.g. Haskell

“Pure” functions with no side effects

- Function outputs depend only on inputs, like mathematics

- No shared state
Immutable data

Functions as data

- Higher-order functions, e.g. map

Syntax, e.g. pattern matching, list comprehensions

©Cogini



Benefits

Easier to test

Concurrency

Easier to deal with faults in production

All state is in function parameters, so logs are good

Message passing

©Cogini



Functional vs Object
Oriented: Types

OO connects behavior with types, i.e. object methods
Functional programming uses types for safety

Modern functional programming languages use type
inference to reduce programmer overhead

“If it will compile, it's correct”

©Cogini



Erlang types

* Pattern matching at runtime
* “Letitcrash”

* Hot code updates

©Cogini



Type checking

Optional type checking
Typespecs
Dialyzer

Tagged tuples

{:0k, wvalue} VS {:error, reasont

Gleam https://gleam.run/

- Types in the language vs types In the runtime, e.g.
Typescript

©Cogini


https://gleam.run/

'/mmutabple Data

e |t's a good thing
Debugging multi-threaded C++ code is horrible

 Erlang does not allow mutating variables
Elixir allows it as syntax, but it's fake
Actually re-binding
"Help, my variables are not varying!”

It you are mutating variables, you are probably doing something
wrong

+ Except performance

+ And algorithms: https://www.amazon.com/Purely-Functional-Data-Structures-
Okasaki/dp/0521663504

©Cogini



Elixir types

Structs are simply wrappers on Maps

defmodule User do
defstruct name:
end

lex> %User{}

"John", age:

$User{age: 27, name:
1ex> %User{name: "Meg"}
$User{age: 27, name:

lex> 1s map (john)
true

1ex> john. struct
User

"John" }

"Meg" }

277

©Cogini



Functional vs Object
Oriented: Nouns vs Verbs

OO: No unbound methods

FP: Standard algorithms with “meta-programming”, lambda
functions

Lambda functions, Ruby "blocks" becoming popular

Execution in the Kingdom of Nouns:
http://steve-yegge.blogspot.tw/2006/03/execution-in-kingdom-
of-nouns.html|

©Cogini


http://steve-yegge.blogspot.tw/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.tw/2006/03/execution-in-kingdom-of-nouns.html

Functional vs Object
Oriented: Polymorphism

e OO: Inheritance

 CLOS: multiple dispatch

* Elixir: pattern matching

e Elixir: Protocols

©Cogini



Protocols

defprotocol Blank do
@doc "Returns true if data is blank/empty”

def blank? (data)
end
end

©Cogini



Protocols

defimpl Blank, for: Integer do
def blank?( ), do: false
end

defimpl Blank, for: List do

def blank?([]), do: true
def blank?( ), do: false
end

defimpl Blank, for: Map do
# We could not pattern match on %{} because
# 1t matches all maps. Check if the size
# 1s zero (and size is a fast operation).
def blank? (map), do: map size (map) ==

end

©Cogini



Protocols

defimpl Blank, for: Atom do
def blank?(false), do: true

def blank? (nil), do: true
def blank?( ), do: false
end

defimpl Blank, for: User do
def blank?( ), do: false
end

©Cogini



Protocols: JSON

iex> IO.puts Poilison.Encoder.encode([1, 2, 3], [1])
" [1,2,3] "

defimpl Poison.Encoder, for: Person do
def encode (% {name: name, age: age}, options) do
Poison.Encoder.BitString.encode ("#{name} (#{age})", options)
end
end

©Cogini



Higher Order Programming

- Functions as data

- Pass a function as a variable into another function

- Using functions to “specialize” common algorithms

©Cogini



Higher Order Programming:
Map

- 1ex> Enum.map([1l, 2, 3], fn x -> x 2 end)
[2, 4, 0]

- 1lex> Enum.map ({1 => 2, 3 => 4}, fn {k, v} -> k v end)
[2, 12]

©Cogini



Higher Order Programming:
F1zz Buzz

- defmodule FizzBuzz do
def fizzbuzz check(n) do
case {rem(n, 3), rem(n, 5)} do
{0, 0} => "FizzBuzz"
{0, } => "Fizz"
{ , 0} => "Buzz"
{_, _} =>mn
end
end

def fizbuzz do

I0.inspect Enum.map(l..100, fizzbuzz check/1)
end
end

©Cogini



Higher Order Programming:
Fold / Reduce

- lex> List.foldl([1l, 2, 3], 0, fn x, acc -> x + acc en d)
6

©Cogini



Higher Order Programming:
| ist Comprehensions

- for a <- list do

end

©Cogini



Higher Order Programming:
Streams

+ nums = Stream.iterate(l, & (&1 + 1))
fizz = Stream.cycle ["", "", "Fizz"]
bUZZ — Stream.CYCle ["", "", ""’ ""’ "BuZZ"]
fizzbuzz = Stream.zip(fizz, buzz)

|> Stream.zip (nums)
| > Stream.map (fn

{emr, """}, number} -> number
{{fizzword, buzzword}, number} -> fizzword <> buzzword
end)
fizzbuzz |> Stream.take (30) [|> Enum.Jjoin("\n") |> IO.puts/{()
+ Laziness

©Cogini



Transforming data

Phoenix: Handling a request is just a series of transformations
- Take a request as input, transform it into a response
Plug “conn”

Ecto changesets

Some dirty stuff in the middle

Database

Logging

Error handling
Pattern matching

Functional core: “with” vs “pipe’

Syntactic sugar: Plug framework

©Cogini



Request

Response

Railway Oriented

Programming

-

Request handling service

[Validate ] [ Update

J

<_—_____/‘
<+
—

Errors

[

Send

J

~

J

Imperative code can return early

/

Unhappy path —
with errors

©Cogini



Railway Oriented

Programming

UpdateDb

on success

©Cogini



Railway Oriented
Programming

Validate UpdateDb

‘”H!lll.. SERRRRRRRRRRRRNANi, tlllliiiii‘”‘H!lllI ATERRRRRRRRNnonen:;

©Cogini



Railway Oriented
Programming

Validate UpdateDb SendEmail

ifiae: Inii T
“||||||||||||||||||||.|||Ii' "~?.'.',”””I.|||||||||||||||||||.|||IlHLu','"Hlll|.|||||||||||||||||||.|||Il|'"u'.'.'.'””lllr

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

http://zohaib.me/railway-programming-pattern-in-elixir/

©Cogini



HiStory

e Model the real world

 Common behavior across multiple types

- Share implementation code

e Code reuse

©Cogini



HiStory

C++ is better than C, because C got out of control
C++ was a great way to make Windows GUIs

C++ is just syntactic sugar
https://github.com/drh/cii

C++ templates and generics, are they object oriented?

Modules are good

©Cogini


https://github.com/drh/cii

Heresy

Objects have not proven to be a great way of modeling the world
Implementation inheritance in a framework vs domain
Lack of multiple inheritance in popular languages like Java

Relational model is fundamental math, not ORM
Domain Driven Design
Domain specific languages (lisp)

SOLID principles

https://medium.com/@andreichernykh/solid-
elixir-7/77584a9ccba

©Cogini


https://medium.com/@andreichernykh/solid-elixir-777584a9ccba
https://medium.com/@andreichernykh/solid-elixir-777584a9ccba

Viacros!

Compile time code generation

https://littlelines.com/blog/2014/07/08/elixir-vs-ruby-

showdown-phoenix-vs-rails

Rails metaprogramming is insane, macros are easy

s it all just code generation plus pattern matching?

http://www.gar1t.com/blog/solving-embarrassingly-obvious-

problems-in-erlang.html

©Cogini


https://littlelines.com/blog/2014/07/08/elixir-vs-ruby-showdown-phoenix-vs-rails
https://littlelines.com/blog/2014/07/08/elixir-vs-ruby-showdown-phoenix-vs-rails

The Age of Concurrency

« Objects are incompatible with concurrency
Every object is a bug waiting to happen
- Singletons
- Or anything
Lock everything?
 Async / await
Not really concurrent

Node.js: started with callbacks, then promises

- Syntactic sugar

- Twisted Python has been doing this for 10 years, and we know how it ends
(badly)

 Message passing concurrency model

©Cogini



Vlessage Passing

Erlang is a *truly* object oriented language, unlike all these pretenders
In Smalltalk, calling a method is sending a message to an object.
How do objects in the real world communicate”? By sending messages.

So Erlang is the most object oriented language there is.
- Start a GenServer process
- Send a message to it, and it will update its state and send a response back

Requests are serialized, kept in the mailbox. Only one request is active at a
time.

Don’t do this!

Model the natural concurrency of your system

©Cogini



Questions?

« Jakeldcogini.com

« @Qreachfth

©Cogini


mailto:jake@cogini.com

