
Thinking Functionally
Elixir Taiwan Meetup
December 15, 2020

Jake Morrison jake@cogini.com

mailto:jake@cogini.com?subject=

Agenda

• What is functional programming?

• Shit talking

What is Functional
Programming?

• More sophisticated type systems, e.g. Haskell

• “Pure” functions with no side effects
- Function outputs depend only on inputs, like mathematics
- No shared state

• Immutable data

• Functions as data
- Higher-order functions, e.g. map

• Syntax, e.g. pattern matching, list comprehensions

Benefits

• Easier to test

• Concurrency

• Easier to deal with faults in production

• All state is in function parameters, so logs are good

• Message passing

Functional vs Object
Oriented: Types

• OO connects behavior with types, i.e. object methods

• Functional programming uses types for safety

• Modern functional programming languages use type
inference to reduce programmer overhead

• “If it will compile, it's correct”

Erlang types

• Pattern matching at runtime

• “Let it crash”

• Hot code updates

Type checking
• Optional type checking

• Typespecs

• Dialyzer

• Tagged tuples
- {:ok, value} vs {:error, reason}

• Gleam https://gleam.run/
- Types in the language vs types in the runtime, e.g.

Typescript

https://gleam.run/

Immutable Data
• It's a good thing

- Debugging multi-threaded C++ code is horrible

• Erlang does not allow mutating variables
- Elixir allows it as syntax, but it’s fake
- Actually re-binding
- "Help, my variables are not varying!"
- If you are mutating variables, you are probably doing something

wrong
✦ Except performance
✦ And algorithms: https://www.amazon.com/Purely-Functional-Data-Structures-

Okasaki/dp/0521663504

Elixir types
• Structs are simply wrappers on Maps

• defmodule User do
 defstruct name: "John", age: 27
 end

• iex> %User{}
 %User{age: 27, name: "John"}
 iex> %User{name: "Meg"}
 %User{age: 27, name: "Meg"}

• iex> is_map(john)
 true
 iex> john.__struct__
 User

Functional vs Object
Oriented: Nouns vs Verbs

• OO: No unbound methods

• FP: Standard algorithms with “meta-programming", lambda
functions

• Lambda functions, Ruby "blocks" becoming popular

• Execution in the Kingdom of Nouns:
http://steve-yegge.blogspot.tw/2006/03/execution-in-kingdom-
of-nouns.html

http://steve-yegge.blogspot.tw/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.tw/2006/03/execution-in-kingdom-of-nouns.html

Functional vs Object
Oriented: Polymorphism

• OO: Inheritance

• CLOS: multiple dispatch

• Elixir: pattern matching

• Elixir: Protocols

Protocols

- defprotocol Blank do
 @doc "Returns true if data is blank/empty”

 def blank?(data)
 end
end

Protocols
- defimpl Blank, for: Integer do

 def blank?(_), do: false
end

- defimpl Blank, for: List do
 def blank?([]), do: true
 def blank?(_), do: false
end

- defimpl Blank, for: Map do
 # We could not pattern match on %{} because
 # it matches all maps. Check if the size
 # is zero (and size is a fast operation).
 def blank?(map), do: map_size(map) == 0
end

Protocols

- defimpl Blank, for: Atom do
 def blank?(false), do: true
 def blank?(nil), do: true
 def blank?(_), do: false
end

- defimpl Blank, for: User do
 def blank?(_), do: false
end

Protocols: JSON

- iex> IO.puts Poison.Encoder.encode([1, 2, 3], [])
"[1,2,3]"

- defimpl Poison.Encoder, for: Person do
 def encode(%{name: name, age: age}, options) do
 Poison.Encoder.BitString.encode("#{name} (#{age})", options)
 end
end

Higher Order Programming

- Functions as data
- Pass a function as a variable into another function
- Using functions to “specialize” common algorithms

Higher Order Programming:
Map

- iex> Enum.map([1, 2, 3], fn x -> x 2 end)
[2, 4, 6]

- iex> Enum.map(%{1 => 2, 3 => 4}, fn {k, v} -> k v end)
[2, 12]

Higher Order Programming:
Fizz Buzz

- defmodule FizzBuzz do
 def fizzbuzz_check(n) do
 case {rem(n, 3), rem(n, 5)} do
 {0, 0} -> "FizzBuzz"
 {0, _} -> "Fizz"
 {_, 0} -> "Buzz"
 {_, _} -> n
 end
 end

 def fizbuzz do
 IO.inspect Enum.map(1..100, fizzbuzz_check/1)
 end
end

Higher Order Programming:
Fold / Reduce

- iex> List.foldl([1, 2, 3], 0, fn x, acc -> x + acc end)
6

Higher Order Programming:
List Comprehensions

- for a <- list do
 …
end

Higher Order Programming:
Streams

✦ nums = Stream.iterate(1, &(&1 + 1))
fizz = Stream.cycle ["", "", "Fizz"]
buzz = Stream.cycle ["", "", "", "", "Buzz"]
fizzbuzz = Stream.zip(fizz, buzz)
|> Stream.zip(nums)
|> Stream.map(fn
 {{"", ""}, number} -> number
 {{fizzword, buzzword}, _number} -> fizzword <> buzzword
end)
fizzbuzz |> Stream.take(30) |> Enum.join("\n") |> IO.puts()

✦ Laziness

Transforming data
• Phoenix: Handling a request is just a series of transformations

- Take a request as input, transform it into a response
- Plug “conn”
- Ecto changesets

• Some dirty stuff in the middle
- Database
- Logging

• Error handling
- Pattern matching
- Functional core: “with” vs “pipe”

• Syntactic sugar: Plug framework

Railway Oriented
Programming

• http://zohaib.me/railway-programming-pattern-in-elixir/

Railway Oriented
Programming

• http://zohaib.me/railway-programming-pattern-in-elixir/

Railway Oriented
Programming

•

Railway Oriented
Programming

• http://zohaib.me/railway-programming-pattern-in-elixir/

History

• Model the real world

• Common behavior across multiple types
- Share implementation code

• Code reuse

History

• C++ is better than C, because C got out of control

• C++ was a great way to make Windows GUIs

• C++ is just syntactic sugar
- https://github.com/drh/cii

• C++ templates and generics, are they object oriented?

• Modules are good

https://github.com/drh/cii

Heresy
• Objects have not proven to be a great way of modeling the world

- Implementation inheritance in a framework vs domain
- Lack of multiple inheritance in popular languages like Java
- Relational model is fundamental math, not ORM

• Domain Driven Design

• Domain specific languages (lisp)

• SOLID principles
- https://medium.com/@andreichernykh/solid-

elixir-777584a9ccba

https://medium.com/@andreichernykh/solid-elixir-777584a9ccba
https://medium.com/@andreichernykh/solid-elixir-777584a9ccba

Macros!
• Compile time code generation

• https://littlelines.com/blog/2014/07/08/elixir-vs-ruby-
showdown-phoenix-vs-rails

• Rails metaprogramming is insane, macros are easy

• Is it all just code generation plus pattern matching?
- http://www.gar1t.com/blog/solving-embarrassingly-obvious-

problems-in-erlang.html

https://littlelines.com/blog/2014/07/08/elixir-vs-ruby-showdown-phoenix-vs-rails
https://littlelines.com/blog/2014/07/08/elixir-vs-ruby-showdown-phoenix-vs-rails

The Age of Concurrency
• Objects are incompatible with concurrency

- Every object is a bug waiting to happen
- Singletons
- Or anything
- Lock everything?

• Async / await
- Not really concurrent
- Node.js: started with callbacks, then promises
- Syntactic sugar
- Twisted Python has been doing this for 10 years, and we know how it ends

(badly)

• Message passing concurrency model

Message Passing
• Erlang is a *truly* object oriented language, unlike all these pretenders

• In Smalltalk, calling a method is sending a message to an object.

• How do objects in the real world communicate? By sending messages.

• So Erlang is the most object oriented language there is.
- Start a GenServer process
- Send a message to it, and it will update its state and send a response back
- Requests are serialized, kept in the mailbox. Only one request is active at a

time.

• Don’t do this!

• Model the natural concurrency of your system

Questions?

• jake@cogini.com

• @reachfh

mailto:jake@cogini.com

