
Embedded Elixir

Elixir LA
August 15, 2018

Jake Morrison <jake@cogini.com>

What is Embedded Programming?

Systems that interact with the physical world

Resource constrained systems

Machines controlled by software

Robots

Self driving cars

Appliances

Cloud apps

Systems that interact with the
physical world

Digital and Analog I/O, Pulse Width Modulation

Sensors, e.g temperature, accelerometer, GPS

Micro-controllers

– 8-bit, e.g. 8051, PIC, Atmel (Arduino)

– 16-bit, e.g. ARM

We are the winners of the
"cell phone wars"

ARM-based “System On Chip”

– Raspberry PI (Broadcom)

– Beaglebone (TI)

– C.H.I.P. (Microtek)

Lots of RAM, storage and CPU power

WiFi, Bluetooth, USB

Lots of resources, challenge is configuration and
management

IoT

Data collection + networking

Edge computing

Video camera with image recognition

Example Projects

GPS tracker

Bus Rapid Transit system controller

– Predictive arrival and departure

– Fare collection

– Advertising

VoIP IP-PBX

Logo inserter for satellite television

Erlang was designed for this!

Telephone switch

Interfacing with switch hardware

"Soft" real time

SunOS, 32 MB of RAM

VxWorks RTOS

Erlang Features

Functional programming

– Outputs depend only on inputs

– No side effects

– Pattern matching: reject invalid input

– Crash dumps with state of whole system

Erlang Features

Supervision trees

Good behavior when hitting resource limits

Concurrency: isolate one request from another

Distributed programming: Reliability requires more
than one computer

OTP standardizes behaviors, e.g. supervisor,
client server, event handling

Erlang Features

Tracing live systems without big performance
impact

Ability to see state of running system, e.g.
observer

Built-in in-memory database, replicated across
nodes

Inter-process Communication: NIF

Embed C in Erlang VM

High performance but dangerous

Good for things like crypto

Inter-process Communication: Port

VM supervises external process

Erlang code sends messages to port, which talks
to external process

Communication over stdin/stdout

Lower performance but full isolation

Serialization overhead

Inter-process Communication:
Erlport / Snake

Interop between Erlang and Python or Ruby

Pool of worker processes to handle jobs

Data structure conversion

http://erlport.org/

https://github.com/arthurcolle/elixir-snake

http://erlport.org/
https://github.com/arthurcolle/elixir-snake

Inter-process communication:
Erlang protocol libraries

Turn your code into an Erlang node

Protocol libraries for for C, Java and .NET

Reasonably good performance, still serialization
overhead

Building embedded systems

Erlang Releases

– Combine VM and libraries used by the app

– Handle hot code updates

OS and Supervisor

Nerves

http://nerves-project.org/

https://hexdocs.pm/nerves/getting-started.html

Linux Kernel + Erlang VM + goodies

Erlang VM as init / PID 1

http://nerves-project.org/
https://hexdocs.pm/nerves/getting-started.html

Nerves Modules

Configure network interfaces

Connect to WiFi networks

Use serial ports

Drive LEDs

Interface with input events /dev/input/event or USB

Over-the-network firmware updates

Simple Service Discovery Protocol (SSDP) Client and
Server

Nerves Howto: Install Nerves

mix archive.install
https://github.com/nerves-project/archives/raw/
master/nerves_bootstrap.ez

https://github.com/nerves-project/archives/raw/master/nerves_bootstrap.ez
https://github.com/nerves-project/archives/raw/master/nerves_bootstrap.ez

Nerves: Generate and compile just
like any Elixir project

mix nerves.new hello_nerves

cd hello_nerves

export MIX_TARGET=rpi3

mix deps.get

mix compile

Nerves: Build your firmware and
burn it to an SD card

mix firmware

mix firmware.burn

Nerves Howto

Nerves in the Cloud

nerves_system_ec2

nerves_init_ec2

hello_nerves_ec2

Cloud Native Elixir

Minimal system, just Buildroot + systemd

Application release

Logging with CloudWatch Logs, ELK, Kinesis

Monitoring with CloudWatch, Prometheus

Config with Parameter Store, KMS

GitOps

– CodeCommit / CodeBuild / CodePipeline

– Blue/Green Deployment with CodeDeploy

Questions?

	Slide 1
	What is Embedded Programming?
	Systems that interact with the physical world
	We are the winners of the "cell phone wars"
	IoT
	Embedded Projects
	Erlang was designed for this !
	Erlang Features
	Erlang Features
	Erlang Features
	Inter-process Communication: NIF
	Inter-process Communication: Port
	Inter-process Communication: Erlport / Snake
	Inter-process communication: Erlang protocol libraries
	Building embedded systems
	Nerves
	Nerves Modules
	Nerves Howto: Install Nerves
	Nerves Howto: Generate and compile just like any Elixir project
	Nerves Howto: Build your firmware and burn it to an SD card
	Nerves Howto
	Slide 22
	Slide 23
	Questions?

