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Agenda

– Why migrate to Phoenix

– How to migrate



Why?

– Rails is a great way to quickly create applicatons

– It hits limits when systems get larger or we need 
to keep persistent connectons

– Do cool things

– Improve performance, reduce costs

– Improve reliability

– Reduce system complexity

– Improve maintenance and ops



My story

– Background in telecom, VoIP, and supply chain

– In 2005, started product development agency 
using Rails

– Bus route management system project, IoT 1.0
• Tired of doing network communicaton in C++

• Wanted real tme web interfaces for maps and alerts

• Rails process model had trouble

• Found Erlang



Erlang

– Runtme and programming language created by 
Ericsson for telecom systems

– C++ systems were out of control

– Highly reliable: nine nines of availability

– Highly concurrent: tens of thousands of 
simultaneous calls

– Distributed: reliability requires more than one 
machine



Erlang

– Practcal functonal programming

– Isolates requests from each other

– Paterns for state management

– Paterns for fault handling

– Best-of-class system-management tools



Erlang

– Great for network communicatons systems

– Web development stack was not mature

– Ended up making hybrid apps: front end in Rails, 
real-tme back end in Erlang



Examples

– Stateful web
• Chat

• Real-tme auctons

• Push notfcatons

– Ad-tech

– Bots

– Embedded systems

– Health care and fnancial services



Elixir / Phoenix

– In 2014, saw Chris McCord’s blog post comparing 
Rails and Phoenix
• htps://litlelines.com/blog/2014/07/08/elixir-vs-ruby-

showdown-phoenix-vs-rails

– Best of both worlds: the ease of use of Rails and 
the power of Erlang
• Similar syntax, similar structure (MVC)

• Less magic

• Beter performance

• Ability to make next generaton applicatons

– Switched our new projects to Elixir



Performance

Phoenix is typically 10x faster than Rails
– Compiled vs interpreted
• Compiled views, compiled routes

• Hot code loading makes development fast

– Uses database more efciently
• Explicit joins instead of automatc loading

• Uses compile tme schema, not runtme meta

– It’s just math
• 100 ms = 10 requests per second / CPU core

• 10 ms = 100 requests per second / CPU core



Concurrency

Beter concurrency = beter use of resources
– A Rails process handles one request at a tme

– Each needs its own RAM, not shared

– Proxying via Rails = idling resources
• Database

• HTTP APIs

• Elastcsearch



Complexity

Poor performance = system complexity
– Background job handlers

– Caching everywhere

– More components

– Less reliability

– Poor load management



Elixir/Phoenix

– Single virtual machine

– Processes are light weight, efectvely unlimited

– Shared resources, e.g. in-memory key/value store 
for caching

– Similar programming model to Rails

– Frameworks for stateful apps



Putng the band back together

– Public web

– CMS

– Back end admin

– Mobile APIs

– Real-tme communicaton

– 3rd-party integratons

– Background jobs



Splitng up the monolith

– Microservices?

– Docker?

– Phoenix domains

– Elixir applicatons in umbrella apps



Incremental migraton



Scenarios

– Implement real tme chat back end
• Channels, pub-sub, presence

– Split of api.example.com

– Implement GraphQL

– Protect back end

– Rate limit trafc: api, scraper, DDOS

– Proxy and coordinate communicaton



Process

Similar approach for most applicatons



Monitor, analyze

– Monitor performance and reliability
• Hosted service like Datadog or Prometheus

• Elastcsearch / Logstash / Kibana

– Look at the trafc

– Count things: requests, response tme, errors
• Figure out where the problems are

• 99% tme is most interestng, not average

• Identfy and classify errors



Prioritze

– User experience

– Cost

– Errors

– Maintenance or ops pain



Route trafc

– Common front end directs trafc based on URL
• Nginx, HAProxy, AWS ALB, Varnish

• Elixir: htps://github.com/poteto/terraform

– Manage load

– Improve security

– Collect metrics



Integrate session

– Share user session / login

– Share database, memcached, JWT token



Integrate UI

– Implement common UI template

– Share navigaton



Migrate, test, monitor

– Implement HTTP routes

– Test in parallel
• Ensure new code gets same response as old

– Monitor in producton

– Repeat



GraphQL

– A great way to build mobile APIs, replacing REST
• Fundamentally beter performance

• Easier development and maintenance

– An ok way to build web interfaces
• With Phoenix, CRUD is easy and fast

• Add channels for interactvity

– Absinthe GraphQL server integrates with Phoenix

– GraphQL as proxy



Improve the architecture

– A good architecture avoids accidental complexity

– Model the natural concurrency of your system

– Splitng everything into tny pieces doesn’t make 
life beter



Functonal programming

– Receive request, transform, send response

– Avoid side efects

– Avoid shared state
• The database is usually the ultmate botleneck

• Cache data with smart invalidaton



Improve reliability

– Use standard paterns
• Microservice HTTP APIs are just RPC done badly

• What do you do if it fails?

– Supervise and retry on failures
• Restart at the beginning

• Persist data on organizaton boundaries

• Event Sourcing

– Reject trafc at the edge



Hostng architectures

What is a good hostng architecture if your 
platform is great at concurrency?



Cloud vs bare metal

– Cloud providers want you to use the cloud, duh

– Dedicated hardware can perform very well with 
low operatonal complexity
• $100/mo for 24 hyperthreads, 32 GB RAM, 10 TB 

transfer

• Two front end servers + two database servers for 
availability = $400/month



Docker

– Standardized deployment mechanism

– Low concurrency

– Operatonal complexity

– Elixir umbrella applicatons



Questons / Comments?
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