
Incrementally migratng large
apps to Phoenix

Ruby Elixir Conf Taiwan 2018

Jake Morrison @cogini

Agenda

– Why migrate to Phoenix

– How to migrate

Why?

– Rails is a great way to quickly create applicatons

– It hits limits when systems get larger or we need
to keep persistent connectons

– Do cool things

– Improve performance, reduce costs

– Improve reliability

– Reduce system complexity

– Improve maintenance and ops

My story

– Background in telecom, VoIP, and supply chain

– In 2005, started product development agency
using Rails

– Bus route management system project, IoT 1.0
• Tired of doing network communicaton in C++

• Wanted real tme web interfaces for maps and alerts

• Rails process model had trouble

• Found Erlang

Erlang

– Runtme and programming language created by
Ericsson for telecom systems

– C++ systems were out of control

– Highly reliable: nine nines of availability

– Highly concurrent: tens of thousands of
simultaneous calls

– Distributed: reliability requires more than one
machine

Erlang

– Practcal functonal programming

– Isolates requests from each other

– Paterns for state management

– Paterns for fault handling

– Best-of-class system-management tools

Erlang

– Great for network communicatons systems

– Web development stack was not mature

– Ended up making hybrid apps: front end in Rails,
real-tme back end in Erlang

Examples

– Stateful web
• Chat

• Real-tme auctons

• Push notfcatons

– Ad-tech

– Bots

– Embedded systems

– Health care and fnancial services

Elixir / Phoenix

– In 2014, saw Chris McCord’s blog post comparing
Rails and Phoenix
• htps://litlelines.com/blog/2014/07/08/elixir-vs-ruby-

showdown-phoenix-vs-rails

– Best of both worlds: the ease of use of Rails and
the power of Erlang
• Similar syntax, similar structure (MVC)

• Less magic

• Beter performance

• Ability to make next generaton applicatons

– Switched our new projects to Elixir

Performance

Phoenix is typically 10x faster than Rails
– Compiled vs interpreted
• Compiled views, compiled routes

• Hot code loading makes development fast

– Uses database more efciently
• Explicit joins instead of automatc loading

• Uses compile tme schema, not runtme meta

– It’s just math
• 100 ms = 10 requests per second / CPU core

• 10 ms = 100 requests per second / CPU core

Concurrency

Beter concurrency = beter use of resources
– A Rails process handles one request at a tme

– Each needs its own RAM, not shared

– Proxying via Rails = idling resources
• Database

• HTTP APIs

• Elastcsearch

Complexity

Poor performance = system complexity
– Background job handlers

– Caching everywhere

– More components

– Less reliability

– Poor load management

Elixir/Phoenix

– Single virtual machine

– Processes are light weight, efectvely unlimited

– Shared resources, e.g. in-memory key/value store
for caching

– Similar programming model to Rails

– Frameworks for stateful apps

Putng the band back together

– Public web

– CMS

– Back end admin

– Mobile APIs

– Real-tme communicaton

– 3rd-party integratons

– Background jobs

Splitng up the monolith

– Microservices?

– Docker?

– Phoenix domains

– Elixir applicatons in umbrella apps

Incremental migraton

Scenarios

– Implement real tme chat back end
• Channels, pub-sub, presence

– Split of api.example.com

– Implement GraphQL

– Protect back end

– Rate limit trafc: api, scraper, DDOS

– Proxy and coordinate communicaton

Process

Similar approach for most applicatons

Monitor, analyze

– Monitor performance and reliability
• Hosted service like Datadog or Prometheus

• Elastcsearch / Logstash / Kibana

– Look at the trafc

– Count things: requests, response tme, errors
• Figure out where the problems are

• 99% tme is most interestng, not average

• Identfy and classify errors

Prioritze

– User experience

– Cost

– Errors

– Maintenance or ops pain

Route trafc

– Common front end directs trafc based on URL
• Nginx, HAProxy, AWS ALB, Varnish

• Elixir: htps://github.com/poteto/terraform

– Manage load

– Improve security

– Collect metrics

Integrate session

– Share user session / login

– Share database, memcached, JWT token

Integrate UI

– Implement common UI template

– Share navigaton

Migrate, test, monitor

– Implement HTTP routes

– Test in parallel
• Ensure new code gets same response as old

– Monitor in producton

– Repeat

GraphQL

– A great way to build mobile APIs, replacing REST
• Fundamentally beter performance

• Easier development and maintenance

– An ok way to build web interfaces
• With Phoenix, CRUD is easy and fast

• Add channels for interactvity

– Absinthe GraphQL server integrates with Phoenix

– GraphQL as proxy

Improve the architecture

– A good architecture avoids accidental complexity

– Model the natural concurrency of your system

– Splitng everything into tny pieces doesn’t make
life beter

Functonal programming

– Receive request, transform, send response

– Avoid side efects

– Avoid shared state
• The database is usually the ultmate botleneck

• Cache data with smart invalidaton

Improve reliability

– Use standard paterns
• Microservice HTTP APIs are just RPC done badly

• What do you do if it fails?

– Supervise and retry on failures
• Restart at the beginning

• Persist data on organizaton boundaries

• Event Sourcing

– Reject trafc at the edge

Hostng architectures

What is a good hostng architecture if your
platform is great at concurrency?

Cloud vs bare metal

– Cloud providers want you to use the cloud, duh

– Dedicated hardware can perform very well with
low operatonal complexity
• $100/mo for 24 hyperthreads, 32 GB RAM, 10 TB

transfer

• Two front end servers + two database servers for
availability = $400/month

Docker

– Standardized deployment mechanism

– Low concurrency

– Operatonal complexity

– Elixir umbrella applicatons

Questons / Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

